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NOMENCLATURE 

thickness of the fin [ml; 
height of the fin [m]; 
heat conductivity of the fin [W/m K]; 
width of the fin [m] ; 
heat capacity rate [W/K]; 
heat flux received by the fluid with lower PC, or 
in a transverse section of the fin [W]; 
current heat-transfer surface Cm’]; 
total exchange surface [m2]; 
local temperature of the fluid with higher heat 
capacity rate, or of the fin [K]; _ 
local temnerature of the fluid with lower heat 
capacity rate [K]; 
overall heat-transfer coefficient of the exchanger, 
or heat-transfer coefficient at the fin [W/m’ K); 

height of the fin (= h/e); ^ _ . 
$, p2 , roots ot a charactertstlc equation; 

roots difference of the characteristic equation. 

Greek symbols 

BP coefficient defined by equation (5); 
s, temperature of the fluid with lower heat 

capacityrate( 

&*, 

9, 

effectiveness of the heat-transfer cell 

temperature of the fluid with higher heat capacity 

rate, or of the fin 

P* 

6, 

a*, 

heat capacity rates ratio 

current heat-transfer active surface 
( = fJS/(P&ni,) ; 
total active surface (= US*/(PC),~,). 

Subscripts 

2 
denote inlet value ; 
denote outlet value; 

4 denote the section of the fin at c = 0; 
t, denote the tip of the fin; 
min, lower value; 
max, higher value. 

IT IS well known that the method of “effectiveness-number 
of transfer units” often appears to be the most advantageous 
in order to evaluate the performances of a two-fluids heat 
exchanger. We shall prove in this short note that the same 
concept and method can apply to evaluate the heat-transfer 
rate and to calculate temperature profiles of arrays of high 
fins with finite flow of fluid between them. 

THE PRELIMINARY CASE OF A PARALLEGFLOW 

HEAT EXCHANGER 

Dimensionless variables E and cr are defined in such a way 
that their values E* and u* at the end of the heat exchanger 
are in fact the effectiveness and the number of transfer units. 

At first, we shall consider briefly the simple case of parallel 
flow heat exchanger (Fig. i), in order to show the successive 
steps of the method. We may write two local equations. 
The first one is the transfer equation: 

dQ 
ds = U(T--t), 

or in dimensionless form : 

da 

The second equation is a local energy balance : 

pdr = -dT 

which may be integrated and written as: 

9 = l-p&. (2) 

By elimination of 9 between (1) and (2) and after integration, 
we get : 

E = l-e-“+P’” 
1+p . 

(3) 

This equation describes the temperature profile of one of 
the fluids vs the dimensionless active surface (local number 
of transfer units), with the heat capacity rates ratio as a 
parameter. When we put stars upon E and o, equation (3) 
gives then the so-called effectiveness of the heat exchanger. 

The 9 profile may be obtained from (2) and (3), to give: 

9 = l+pe-“+p)” 

1+/l . 

The common limit value for E and 9 when (r + co appears 
immediately to be (1 +p)-I. 

FINS WITH FINITE FLUID FLOW BETWEEN THEM 

Frequently the fins (either longitudinal or transverse high 
fins) belonging to a heat exchanger may be idealized as 
follows: the fins are rectangular; each fin base is at a constant 
temperature (this of the tube on which it is fastened); the 
streamlines in the fluid and the fluxlines of heat in the core 
of the fin are parallel, but may have either the same or 
opposite directions. 

This problem can be treated in a very analogous manner 
as the preceding one. But here, the two transfer media act 
in very different ways: the one (the fluid) possesses pure 
convective properties in x or er direction; the other (the 
metallic core of the fin) acts only by conduction 

Now E, 9 and CI are defined in the same way as before, 
except that there exists only one heat capacity rate PC. 
Therefore p does not exist anymore. U becomes a simple 
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Fourier’s law may be written in the form 

d I c 

0 S’ s 

FIG. 1. Schematic diagram of evaluation of temperatures 
in a co-current heat exchanger. 

By combination of equations (1) (6) and (7) we have: 

dZE de E . --+__._= _“o 
daP I”; 

Integration of this differential equation is obvious. The 
roots of the characteristic equation are: 

pi = -&l +R), Pz = -%1-R), 

with 

R= 

We must now distinguish two sets of boundary conditions. 

! h 

I 

p+----T 
or 
x Case I 

FiiKiG (co-currant) 

FIG. 2. Geometrical configuration for the fin problem. 

convection coefficient; the area of contact between fin and 
fluid is S = 2Lx (Fig. 2). 

The local transfer equation is now again equation (l), but 
the local energy balance writes as: 

(4) 

whatever may be the respective directions of heat flux and 
fluid flow. 

Dimensionless coefficient p is equal to: 

2klJ& ae2 

B = (PC)* =m’ (3 

u* has the form of a Stanton number; H is the dimensionless 
height of the fin. 

After a first integration of (4) and using the condition 
E = 0 at boundary a = 0, we get: 

(6) 

If we define the dimensionless heat flux in the transverse 
section of the fin at CT = 0, as: 

1. Streamlines and jluxlines are in the same direction 

B.C. : & = 0, d = 0, 

3=&g= 1, I3 = 0. 

We have here: 

(li-p,&JeP@ (l+plgO)ep~s 
a= --- +90. (9) 

PI-P?. PI -Pz 

At a = 0, rj,, is the total heat flux cr’ossing the base of the 
fin, i.e. comprising the heat flux transmitted to the surround- 
ing fluid and the flux crossing through the tip of the fin (4,): 

40 = c*+4,. 

From (9) in terms of u* and /3 (or R), we have for E* : 

2. Streamlines andjhxlines are in opposite directions 

B.C. : 8 = 0, u = 0, 

c= u*. 

Here, & reduces to &, and we get by integration of (8): 

E=[l-(i),(l+pleP~*)]eP1u-[l-~,(l+pleP~u*)JeP~ 

pie PP_p2ePP 

+&. (11) 

We can deduce the expression for E* : 

2 
a* = 

R 
. (12) 

If---------- 

tanh y 

Comparison of equations (10) and (12) shows immediately 
that when the heat flux through the tip of the fin is zero, 
the expressions for E* are the same; the heat fluxes transferred 
to the surrounding fluid are thus equal. 

When & is not zero, analogous losses through the tip of 
the fins for the two cases considered here result in values 
of & to be put into (10) and (12) which are equal but with 
opposite signs. If this is done, one can easily verify that 
E* for the “co-current” case is always lower than for the 
~‘counter-current” case. 

The temperature profiles in the fin can be calculated 
easiIy from equation (1) and either equation (9) or (11). 
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Another interesting reference should be a fin of infinite TIfE EFFICIENCY OF THE FIN 

In what follows, we shall restrict ourselves to the case 
where there is no heat loss at the tip of the fin; the direction 
of fluid flow needs not to be indicated anymore. 

The classical concept of efficiency introduced by Harper 
and Brown [l] can now be introduced: this “constitution 
efficiency” elr is the ratio of the heat flux dissipated by the 
fin to the one which would be transferred if the heat con- 
ductivity of the fin had become infinite. If k -+ co, then 
Bi-+O,R+l,andwehave: 

1 
lC..----- - , 

CT* 
tanh -2 

&&. = 
R . 

I+------- 

tanh y 

When, furthermore, the heat capacity rate becomes infinite 
(u* -to), so as it is supposed in most cases, we find the 
classical expression: 

lim Pc-ca&h = 

tanh H &Bi) 

HVf(2Bi) . 

But we can find other relevant criteria ofperfectness, which 
may characterize the property of efficiency of a fin. Par- 
ticularly, the parameter E* that we have emphasized here 
above appears to be a “global efficiency” of the fin, since 
the fin of reference should have both infinite thermal 
conductivity and height or extension. 

extension but with- its real thermal conductivity: the 
“extension efficiency” defined in this scope is of interest for 
the designer [2]. 

With finite fluid flow, the “extension efficiency” E,, is 
given by : 

l+R 
&h = 

R ’ 
1+- 

tanh F 

while, when fluid flow becomes infinite, the following and 
very simple expression is found: 

hmpc_m~h = tanh ffJ(2Bi). 

CONCLUSIONS 

We have solved the most general problem of heat transfer 
from fins with heat losses at their tips and finite fluid flow 
between them. This was done in the scope of the concept 
of effectiveness of a heat-transfer cell. From the results first 
obtained, we have deduced general expressions for several 
parameters of etIiciency of a fin. 
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ON THE LINEARIZED ANALYSIS OF ENTRANCE FLOW 
IN HEATED, POROUS CONDUITS 
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NOMENCLA~RE 

C,, f),, constant coefficients; 
El(x),&(x), residual terms; 

function defined by (13); 
Nusselt number; 
Peclet number; 
Prandtl number; 
Reynolds number; 
temperature; 

F~(Y)> 
Nu, 
Pe, 
Pr. 
& 
T, 
u, 
u, v, 
x, Y, 

mean velocity; 
velocity components in x, y directions; 
coordinates parallel to and normal to flow 
direction; 

5.. reduced coordinate of x, (9); 
&, /% eigenvahtes, (18), (27); 
cb, confluent hypergeometric function. 
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THE STEADY, laminar, incompressible flow in the entrance 
region of heated, porous conduits is investigated by the 
linearized method, which is known to yield good results for 
momentum transfer in tubes of imnermeable wall but is onlv 
fairly good for momentum transfer and failed for heat 
transfer in porous tubes [l]. It is shown in this note that 
the method gives also good results for porous conduits and 
analytical solutions can be obtained, provided that the 
transverse velocity is taken into account and suitably 
approximated. 

LINEARIZED EQUATIONS 

Consider the laminar flow of an incompressible fluid 
between two parallel semi-infinite porous plates and through 
a semi-infinite circular tube of porous wall. As usual, all 
thermo-physical properties of the fluid are assumed constant, 
and the rate of injection or suction and the wall tempera- 
tures are assumed constant and uniform. The inlet velocity 
and temperature profiles are prescribed: uniformly dis- 
tributed over the cross-section or fully~evelo~ in conduits 

Superscripts 

b, bulk; 
i, inbt of conduit ; 
W, wall of conduit. 
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